x <- read_csv("data/History.csv")
glimpse(x)
## Observations: 3,629
## Variables: 19
## $ Request <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13...
## $ ID <dbl> NA, NA, NA, NA, 12201, 12194, NA, NA, NA,...
## $ `Date Poured` <chr> "1/5/1999", "1/6/1999", "1/7/1999", "1/8/...
## $ `Date Received` <chr> "1/4/1999", "1/4/1999", "1/4/1999", "1/4/...
## $ `Date Completed` <chr> "1/13/1999", "1/13/1999", "1/13/1999", "1...
## $ `Requested by` <chr> "18", "CLINGERMAN,M.", "CLINGERMAN, M.", ...
## $ `Customer Name` <chr> "TS&D", "TS&D", "TS&D", "TS&D", "BRILLION...
## $ `Product Tested` <chr> "ISOCURE", "ISOCURE", "ISOCURE", "ISOCURE...
## $ `Casting Type` <chr> "STEPCONE", "STEPCONE", "EROSION WEDGE", ...
## $ `Number of castings` <dbl> 8, 8, 8, 8, 3, 1, 8, 10, 8, 4, 10, 8, 2, ...
## $ Alloy <chr> "GRAY IRON", "GRAY IRON", "GRAY IRON", "G...
## $ lbs <dbl> 250, 250, 600, 600, 90, 90, 160, 30, 20, ...
## $ `Sand type` <chr> "TECHNISAND 1L-5W", "TECHNISAND 1L-5W", "...
## $ `Amount used` <dbl> 840, 840, 1680, 1680, 270, 210, 640, 240,...
## $ `Total hours` <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
## $ `Total Cost` <dbl> 1300, 1300, 2210, 2210, 862, 715, 2080, 8...
## $ `Furnace Cycle` <chr> "W68", "W69", "W70, W71", "W72, W73", "W7...
## $ `Notes ML` <chr> "TEST NEW BASE RESIN WITH STEPCONE CASTIN...
## $ `Special Projects` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N...
# create function for later use
get_levels <- function(df, col){
x.levels <- cbind(colnames(df),
(as.data.frame(sapply(df,function(x) length(unique(x)))))
)
colnames(x.levels) <- c("var","levels")
row.names(x.levels) <- NULL
levels <- x.levels[order(-x.levels[,2]),]
return(levels[col,])
}
get_levels(x)
gg_miss_var(x, show_pct = T)
gg_miss_which(x)
Rename variables to be all lowercase with no spaces. Seems the most important variables are casting type and alloy type, as these are the only with zero missing values.
ID: not utilized in recent pours, delete
Date completed: convert to date format, fill missing values, perhaps create new column calculating days to complete from date received/completed
Special projects: most values are missing, unsure of importance of this field, should likely merge with comments or remove entirely
Product tested: fill missing values, will require some renaming/matching
lbs: lbs of metal used, could be calculated based on values, fill missing values
Amount used: sand? unsure what amount this is talking about
Furnace cycle: need to come up with new way to ID new lining and cycles
Total cost: fill missing values, perhaps determine how it is calculated to automate the calculation
We have many missing datapoints, fields that aren’t inuitive, some useless fields, fields that need added, etc. We’ll start with the most simple and move on.
Convert column names to lower case, replace spaces with periods.
names <- tolower(colnames(x)) # convert to lowercase
names <- gsub(" ", " ", names) # remove double spaces
names <- gsub(" ", "\\.", names) # replace space with .
names[c(12,14)] <- c("alloy.lbs", "sand.lbs")
colnames(x) <- names
colnames(x)
## [1] "request" "id" "date.poured"
## [4] "date.received" "date.completed" "requested.by"
## [7] "customer.name" "product.tested" "casting.type"
## [10] "number.of.castings" "alloy" "alloy.lbs"
## [13] "sand.type" "sand.lbs" "total.hours"
## [16] "total.cost" "furnace.cycle" "notes.ml"
## [19] "special.projects"
There is a duplicate entry somewhere based on number of unique levels versus number of rows.
which(duplicated(x$request)==TRUE)
## [1] 3611
as.data.frame(t(x[3609:3611,]))
The first entry appears to have been made in error until we see the furnace cycle was incremented. Probably shouldn’t remove, will simply re-assign all request variables to equal row numbers.
x <- x %>%
mutate(request = seq(1:nrow(x)))
get_levels(x, 1)
Delete useless column.
x <- x %>%
select(-id)
Convert char to date values.
x <- x %>%
mutate(date.poured = as.Date(x$date.poured, "%m/%d/%Y")) %>%
mutate(date.received = as.Date(x$date.received, "%m/%d/%Y")) %>%
mutate(date.completed = as.Date(x$date.completed, "%m/%d/%Y"))
summary(x[c(3,2,4)])
## date.received date.poured date.completed
## Min. :1990-10-20 Min. :1995-08-04 Min. :1999-01-13
## 1st Qu.:2001-07-27 1st Qu.:2001-08-08 1st Qu.:2001-10-31
## Median :2005-06-08 Median :2005-07-11 Median :2005-09-23
## Mean :2006-02-25 Mean :2006-03-03 Mean :2006-04-11
## 3rd Qu.:2010-03-31 3rd Qu.:2010-05-18 3rd Qu.:2010-06-11
## Max. :2513-11-01 Max. :2078-08-24 Max. :2106-04-05
## NA's :43 NA's :1 NA's :229
With these dates we can now determine a few useful values:
Of course, we need to fix the erroneous entries that are pushing our Max
values all the way
up to the year 2513.
We manually fix the handful of dates with typos.
wrong.dates <- x %>%
filter(date.received > "2020-01-01" |
date.poured > "2020-01-01" |
date.completed > "2020-01-01")
as.data.frame(wrong.dates)[,c(1,3,2,4)]
# manually fix
x$date.poured[1103] <- as.Date("2002-04-30")
x$date.completed[1198] <- as.Date("2002-08-22")
x$date.received[1889] <- as.Date("2005-11-17")
x$date.poured[2735] <- as.Date("2002-06-10")
x$date.received[2740] <- as.Date("2010-06-15")
x$date.received[3106] <- as.Date("2012-03-20")
x$date.received[3149] <- as.Date("2012-06-19")
x$date.received[3341] <- as.Date("2013-11-01")
x$date.completed[3582] <- as.Date("2016-04-05")
x$date.poured[3606] <- as.Date("2017-08-24")
# dates now seem to be in a normal range
summary(x[c(3,2,4)])
## date.received date.poured date.completed
## Min. :1990-10-20 Min. :1995-08-04 Min. :1999-01-13
## 1st Qu.:2001-07-27 1st Qu.:2001-08-08 1st Qu.:2001-10-31
## Median :2005-06-08 Median :2005-07-07 Median :2005-09-20
## Mean :2005-12-31 Mean :2006-02-21 Mean :2006-03-30
## 3rd Qu.:2010-03-30 3rd Qu.:2010-05-17 3rd Qu.:2010-06-10
## Max. :2016-04-25 Max. :2018-11-28 Max. :2016-05-02
## NA's :43 NA's :1 NA's :229
Now that are values are all within somewhat normal ranges, detecting further errors will require
calculating the differences in dates. For example if date.received
has a later date than
date.completed
we will see a negative value in our new lead.time
variable.
Using the function on our current data shows negative values in all new variables as well as some
unrealistically large Max
values.
## create function so that results of editing can be seen quickly
calc_lead <- function(){
preprocessing.time <- as.numeric(x$date.poured-x$date.received)
postprocessing.time <- as.numeric(x$date.completed-x$date.poured)
lead.time <- preprocessing.time + postprocessing.time
x.temp <- as_tibble(cbind(x,
preprocessing.time,
postprocessing.time,
lead.time))
return(x.temp)
}
summary(calc_lead()[c(19:21)])
## preprocessing.time postprocessing.time lead.time
## Min. :-3288.00 Min. :-4014.000 Min. :-4011.000
## 1st Qu.: 3.00 1st Qu.: 1.000 1st Qu.: 5.000
## Median : 5.00 Median : 2.000 Median : 8.000
## Mean : 5.74 Mean : 3.641 Mean : 8.176
## 3rd Qu.: 8.00 3rd Qu.: 5.000 3rd Qu.: 14.000
## Max. : 3293.00 Max. : 3288.000 Max. : 2804.000
## NA's :43 NA's :229 NA's :232
We filter for values larger than 400 and find quite a few entries have simple typos. We correct the handful of errors by hand.
## fix large values
wrong.dates <- calc_lead() %>%
filter(preprocessing.time > 400 |
postprocessing.time > 400)
wrong.dates[c(1,3,2,4)]
# manually fix
x$date.received[310] <- as.Date("1999-10-20")
x$date.poured[930] <- as.Date("2001-08-30")
x$date.poured[1091] <- as.Date("2002-04-22")
x$date.received[1616] <- as.Date("2004-04-13")
x$date.poured[1668] <- as.Date("2004-08-04")
x$date.poured[1877] <- as.Date("2005-11-01")
x$date.received[2229] <- as.Date("2007-01-07")
x$date.poured[2735] <- as.Date("2010-06-10")
x$date.poured[3133] <- as.Date("2012-05-17")
# max values look better now
summary(calc_lead()[c(19:21)])
## preprocessing.time postprocessing.time lead.time
## Min. :-3283.000 Min. :-4014.000 Min. :-4011.000
## 1st Qu.: 3.000 1st Qu.: 1.000 1st Qu.: 5.000
## Median : 5.000 Median : 2.000 Median : 8.000
## Mean : 5.028 Mean : 2.244 Mean : 6.993
## 3rd Qu.: 8.000 3rd Qu.: 5.000 3rd Qu.: 14.000
## Max. : 374.000 Max. : 383.000 Max. : 434.000
## NA's :43 NA's :229 NA's :232
This occurs when dates are not in proper chronology: date.received < date.poured < date.completed. We can fix this by filtering for dates that do not meet this criteria and adjusting them based on available dates and median values for preprocessing/postprocessing/lead times.
In this case we have 244 rows of incorrectly ordered data, definitely not going to do this manually. This time we’ll impute the missing data by taking the median values of the correct data. First part of the code fixes NA values.
# fix negatives
# must follow: received < poured < completed
wrong.dates2 <- calc_lead() %>%
filter(preprocessing.time < 0 | postprocessing.time < 0)
wrong.dates2[c(1,3,2,4)]
# antijoin the incorrect data
x.anti <- anti_join(calc_lead(), wrong.dates2, c("request"))
# record median values for imputation
summary(x.anti[c(19:21)])
## preprocessing.time postprocessing.time lead.time
## Min. : 0.000 Min. : 0.000 Min. : 0.00
## 1st Qu.: 3.000 1st Qu.: 1.000 1st Qu.: 6.00
## Median : 6.000 Median : 3.000 Median : 9.00
## Mean : 8.141 Mean : 5.218 Mean : 13.11
## 3rd Qu.: 8.000 3rd Qu.: 6.000 3rd Qu.: 14.00
## Max. :372.000 Max. :308.000 Max. :434.00
## NA's :43 NA's :225 NA's :228
# preprocessing.time postprocessing.time lead.time
# Median : 6.000 Median : 3.000 Median : 9.00
# have NA values in date.completed
summary(wrong.dates2[c(3,2,4)])
## date.received date.poured date.completed
## Min. :1999-01-15 Min. :1999-01-19 Min. :1999-01-17
## 1st Qu.:2012-07-27 1st Qu.:2012-09-24 1st Qu.:2012-10-07
## Median :2013-12-25 Median :2013-12-18 Median :2013-12-26
## Mean :2012-03-08 Mean :2012-01-30 Mean :2012-01-29
## 3rd Qu.:2014-10-15 3rd Qu.:2014-10-10 3rd Qu.:2014-10-11
## Max. :2016-02-24 Max. :2016-02-25 Max. :2016-02-24
## NA's :4
# if NA change completed date to received + 9
for (i in 1:dim(wrong.dates2)[1]){
if (is.na(wrong.dates2$date.completed[[i]]) == TRUE){
wrong.dates2$date.completed[[i]] <- wrong.dates2$date.received[[i]] + 9
}
}
# no more NA's
summary(wrong.dates2[c(3,2,4)])
## date.received date.poured date.completed
## Min. :1999-01-15 Min. :1999-01-19 Min. :1999-01-17
## 1st Qu.:2012-07-27 1st Qu.:2012-09-24 1st Qu.:2012-07-24
## Median :2013-12-25 Median :2013-12-18 Median :2013-12-22
## Mean :2012-03-08 Mean :2012-01-30 Mean :2011-12-27
## 3rd Qu.:2014-10-15 3rd Qu.:2014-10-10 3rd Qu.:2014-10-11
## Max. :2016-02-24 Max. :2016-02-25 Max. :2016-02-24
#
# now we fix errors in chronology causing negative time calculations
summary(wrong.dates2[c(19:21)])
## preprocessing.time postprocessing.time lead.time
## Min. :-3283.00 Min. :-4014.00 Min. :-4011.00
## 1st Qu.: -13.00 1st Qu.: 0.00 1st Qu.: -12.00
## Median : -7.00 Median : 1.00 Median : -5.00
## Mean : -37.62 Mean : -36.91 Mean : -73.52
## 3rd Qu.: -1.00 3rd Qu.: 3.00 3rd Qu.: 0.00
## Max. : 374.00 Max. : 383.00 Max. : 27.00
## NA's :4 NA's :4
# start with received coming before poured
# wrong.dates2$date.received > wrong.dates2$date.poured
wrong.dates2[c(2,3,6,7),c(3,2,4)]
# then completed coming before poured
# wrong.dates2$date.poured > wrong.dates2$date.completed
# wrong.dates2$date.completed < wrong.dates2$date.poured
wrong.dates2[c(1,4,5,8),c(3,2,4)]
for (i in 1:dim(wrong.dates2)[1]){
# preprocessing time = poured - received; median = 6
if (wrong.dates2$date.received[[i]] > wrong.dates2$date.poured[[i]]){
wrong.dates2$date.received[[i]] <- wrong.dates2$date.poured[[i]] - 6
}
# postprocessing time = completed - poured; median = 3
if (wrong.dates2$date.completed[[i]] < wrong.dates2$date.poured[[i]]){
wrong.dates2$date.completed[[i]] <- wrong.dates2$date.poured[[i]] + 3
}
}
# confirm chronology
# wrong.dates2$date.received <= wrong.dates2$date.poured
# wrong.dates2$date.poured <= wrong.dates2$date.completed
# now that `wrong.dates2` has corrected values, merge with original df
counter=1
for (i in 1:nrow(x)){
if (counter == nrow(wrong.dates)+1){break}
if (x$request[[i]] == wrong.dates$request[[counter]]){
x[i,c(2,3,4)] <- wrong.dates[counter,c(2,3,4)]
counter=counter+1
}
}
# date summary looks okay now... except for NA's
summary(calc_lead()[c(19:21)])
## preprocessing.time postprocessing.time lead.time
## Min. :-3288.00 Min. :-4014.000 Min. :-4011.000
## 1st Qu.: 3.00 1st Qu.: 1.000 1st Qu.: 5.000
## Median : 5.00 Median : 2.000 Median : 8.000
## Mean : 5.74 Mean : 3.641 Mean : 8.176
## 3rd Qu.: 8.00 3rd Qu.: 5.000 3rd Qu.: 14.000
## Max. : 3293.00 Max. : 3288.000 Max. : 2804.000
## NA's :43 NA's :229 NA's :232
Our calculations have NA values which means our dates must have NA’s. We’ll check which date columns contain NA’s and in a similar fashion to above will impute appropriate dates based on the calculated median values above.
Based on the summary
output it looks like date.poured
has only a single
NA
value. If we fill this date in by hand we can just calculate the other variables based
on the date.poured
value and our previously calculated median values of processing times.
# check NAs
summary(x)[,c(3,2,4)]
## date.received date.poured date.completed
## Min. :1990-10-20 Min. :1995-08-04 Min. :1999-01-13
## 1st Qu.:2001-07-27 1st Qu.:2001-08-08 1st Qu.:2001-10-31
## Median :2005-06-08 Median :2005-07-07 Median :2005-09-20
## Mean :2005-12-31 Mean :2006-02-21 Mean :2006-03-30
## 3rd Qu.:2010-03-30 3rd Qu.:2010-05-17 3rd Qu.:2010-06-10
## Max. :2016-04-25 Max. :2018-11-28 Max. :2016-05-02
## NA's :43 NA's :1 NA's :229
# fill NA values using date.poured to calculate received and completed
# guess on single NA
x %>% filter(is.na(date.poured))
(x[3608:3612,])
(x$date.poured[3611] - x$date.poured[3609]) / 2 # 144 days between dates
## Time difference of 144 days
# just assign the middle date
x$date.poured[3610] <- x$date.poured[3609] - 72
# now date.poured has no NA's and we can extrapolate from this
summary(x)[,c(3,2,4)]
## date.received date.poured date.completed
## Min. :1990-10-20 Min. :1995-08-04 Min. :1999-01-13
## 1st Qu.:2001-07-27 1st Qu.:2001-08-08 1st Qu.:2001-10-31
## Median :2005-06-08 Median :2005-07-08 Median :2005-09-20
## Mean :2005-12-31 Mean :2006-02-22 Mean :2006-03-30
## 3rd Qu.:2010-03-30 3rd Qu.:2010-05-17 3rd Qu.:2010-06-10
## Max. :2016-04-25 Max. :2018-11-28 Max. :2016-05-02
## NA's :43 NA's :229
# convert all NA date.received to date.poured-6
x.rec <- x %>%
filter(is.na(date.received)) %>%
mutate(date.received = date.poured - 6)
# merge back into original df
counter=1
for (i in 1:nrow(x)){
if (x$request[[i]] == x.rec$request[[counter]]){
x[i,c(2,3,4)] <- x.rec[counter,c(2,3,4)]
counter=counter+1
}
}
# convert all NA date.completed to date.poured+6
x.com <- x %>%
filter(is.na(date.completed)) %>%
mutate(date.completed = date.poured + 3)
# merge back into original df
counter=1
for (i in 1:nrow(x)){
if (x$request[[i]] == x.com$request[[counter]]){
x[i,c(2,3,4)] <- x.com[counter,c(2,3,4)]
counter=counter+1
}
}
# NOW we have zero NA values
summary(calc_lead()[c(19:21)])
## preprocessing.time postprocessing.time lead.time
## Min. :-3288.000 Min. :-4014.000 Min. :-4011.000
## 1st Qu.: 3.000 1st Qu.: 1.000 1st Qu.: 5.000
## Median : 5.000 Median : 3.000 Median : 8.000
## Mean : 5.743 Mean : 3.601 Mean : 9.344
## 3rd Qu.: 8.000 3rd Qu.: 5.000 3rd Qu.: 14.000
## Max. : 3293.000 Max. : 3288.000 Max. : 3291.000
# assign our new values to the df
x <- calc_lead()
Seems to be a redundant column when the $notes column would suffice. Check if values are stored in the column and concatenate them with the notes column.
# list non-NA values in special projects
x$special.projects[!is.na(x$special.projects)]
## [1] "RESIN"
## [2] "RESIN"
## [3] "RESIN"
## [4] "RESIN"
## [5] "RESIN"
## [6] "RESIN"
## [7] "G"
## [8] "RAW 3114."
## [9] "ROTORS FOR GILSON"
## [10] "ROTORS FOR R.SHOWMAN"
## [11] "ROTORS FOR R. SHOWMAN-ADD. HEAD HEIGHT"
## [12] "ROTOR D.O.E. R. SHOWMAN"
## [13] "ROTOR D.O.E. R. SHOWMAN"
## [14] "COPPER STEPCONES-FALCON FOUNDRY"
## [15] "COPPER STEPCONES-FALCON FOUNDRY"
## [16] "COPPER STEPCONES-FALCON FOUNDRY"
## [17] "HEAT EXCHANGER"
## [18] "Belt Buckels"
## [19] "BELT BUCKELS"
## [20] "ADDITIONAL METAL FOR 300 LBS."
## [21] "\\"
## [22] "'"
## [23] "'"
## [24] "SEE IF .5MM SILICA BEADS HAVE A BENEFIT"
## [25] "COATINGS AND ADDITIVES, PRODUCT SUPPORT"
## [26] "Coatings and Additives, Product Support"
## [27] "double height risers for penetration"
# find rownums of non-NA vlaues
spec.rows <- which(!is.na(x$special.projects)==T)
# check notes.ml of same rownums
x$notes.ml[spec.rows]
## [1] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB-EXP. BASE"
## [2] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB"
## [3] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB BASE"
## [4] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB BASE"
## [5] "COMPARE EROSION(REVERSE SPRUE) OF 450WB/850WB W/EXP.BASE"
## [6] "COMPARE EROSION(REVERSE SPRUE) OF 450WB/850WB EXP. BASE"
## [7] "COMPARE SHAKEOUT OF EXISTING BINDER SYSTEMS FOR SALES MEETIN"
## [8] "EVALUATE ISOSET BINDERS ON CUSTOMERS SAND TO REPLACE INSTAD"
## [9] "MAKE AND SHIP ROTORS TO SHIN-KEN FOR D. GILSON"
## [10] "EVALUATE LARGER (50%) ROTOR CORE FOR VEINING"
## [11] "DOUBLE STACK ROTOR & ADD HEAD HEIGHT FOR VEINING."
## [12] "ROTOR D.O.E. TO EVALUATE VEINING, PENETRATION, & SUR.FINISH"
## [13] "ROTOR D.O.E. TO EVALUATE VEINING, PENETRATION, & SUR. FINISH"
## [14] "FIND ONE BINDER SYSTEM TO WORK IN A COPPER BASE ALLOY"
## [15] "FIND ONE BINDER SYSTEM TO WORK IN A COPPER BASE ALLOY"
## [16] "FIND ONE BINDER SYSTEM TO WORK IN A COPPER BASE ALLOY"
## [17] "REPLACE HEAT EXCHANGER ON POWER TRACK"
## [18] "TEST DEFINITION OF BELT BUCKLE PATTERN"
## [19] "POUR BELT BUCKLES FOR SEMINAR GIFTS"
## [20] "DETERMINE AN ADDITIVE FOR USE WITH WARM BOX RESIN"
## [21] "INVESTIGATE NEW ISOCOTE SGW 32 VARIAITION-STEPCONE CST."
## [22] "EVALUATE DILATION, PENETRATION, VEINING, AND SURFACE FINISH"
## [23] "TEST MIRATEC TS 505 AND FORMULATION VARIATIONS"
## [24] "DETERMINE AFFECRS THAT ACTIVE CARBON PLAYS AS AN ADDITIVE"
## [25] "TEST MODIFICATIONS MADE TO MIRATEC 508"
## [26] "Test modifications made to MIRATEC MB 508"
## [27] NA
# concatenate the columns
x[spec.rows,] <- x[spec.rows,] %>%
mutate(notes.ml = paste(notes.ml, special.projects, sep="--"))
# confirm
x$notes.ml[spec.rows]
## [1] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB-EXP. BASE--RESIN"
## [2] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB--RESIN"
## [3] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB BASE--RESIN"
## [4] "DETERMINE EROSION (REVERSE SPRUE) OF 450WB/850WB BASE--RESIN"
## [5] "COMPARE EROSION(REVERSE SPRUE) OF 450WB/850WB W/EXP.BASE--RESIN"
## [6] "COMPARE EROSION(REVERSE SPRUE) OF 450WB/850WB EXP. BASE--RESIN"
## [7] "COMPARE SHAKEOUT OF EXISTING BINDER SYSTEMS FOR SALES MEETIN--G"
## [8] "EVALUATE ISOSET BINDERS ON CUSTOMERS SAND TO REPLACE INSTAD--RAW 3114."
## [9] "MAKE AND SHIP ROTORS TO SHIN-KEN FOR D. GILSON--ROTORS FOR GILSON"
## [10] "EVALUATE LARGER (50%) ROTOR CORE FOR VEINING--ROTORS FOR R.SHOWMAN"
## [11] "DOUBLE STACK ROTOR & ADD HEAD HEIGHT FOR VEINING.--ROTORS FOR R. SHOWMAN-ADD. HEAD HEIGHT"
## [12] "ROTOR D.O.E. TO EVALUATE VEINING, PENETRATION, & SUR.FINISH--ROTOR D.O.E. R. SHOWMAN"
## [13] "ROTOR D.O.E. TO EVALUATE VEINING, PENETRATION, & SUR. FINISH--ROTOR D.O.E. R. SHOWMAN"
## [14] "FIND ONE BINDER SYSTEM TO WORK IN A COPPER BASE ALLOY--COPPER STEPCONES-FALCON FOUNDRY"
## [15] "FIND ONE BINDER SYSTEM TO WORK IN A COPPER BASE ALLOY--COPPER STEPCONES-FALCON FOUNDRY"
## [16] "FIND ONE BINDER SYSTEM TO WORK IN A COPPER BASE ALLOY--COPPER STEPCONES-FALCON FOUNDRY"
## [17] "REPLACE HEAT EXCHANGER ON POWER TRACK--HEAT EXCHANGER"
## [18] "TEST DEFINITION OF BELT BUCKLE PATTERN--Belt Buckels"
## [19] "POUR BELT BUCKLES FOR SEMINAR GIFTS--BELT BUCKELS"
## [20] "DETERMINE AN ADDITIVE FOR USE WITH WARM BOX RESIN--ADDITIONAL METAL FOR 300 LBS."
## [21] "INVESTIGATE NEW ISOCOTE SGW 32 VARIAITION-STEPCONE CST.--\\"
## [22] "EVALUATE DILATION, PENETRATION, VEINING, AND SURFACE FINISH--'"
## [23] "TEST MIRATEC TS 505 AND FORMULATION VARIATIONS--'"
## [24] "DETERMINE AFFECRS THAT ACTIVE CARBON PLAYS AS AN ADDITIVE--SEE IF .5MM SILICA BEADS HAVE A BENEFIT"
## [25] "TEST MODIFICATIONS MADE TO MIRATEC 508--COATINGS AND ADDITIVES, PRODUCT SUPPORT"
## [26] "Test modifications made to MIRATEC MB 508--Coatings and Additives, Product Support"
## [27] "NA--double height risers for penetration"
Remove duplicate and misspelled names.
# remove double spaces, commas, periods, caps, generate soundex
x <- x %>%
mutate(requested.by = str_replace_all(requested.by, '\\ ', '')) %>%
mutate(requested.by = str_replace_all(requested.by, '\\,', '')) %>%
mutate(requested.by = str_replace_all(requested.by, '\\.', '')) %>%
mutate(requested.by = str_to_lower(requested.by)) %>%
mutate(sound = soundex(requested.by,clean=F))
# list unique sounds
unique(x$sound)
## [1] "" "C452" "B431" "A621" "T632" "F236" "S616" "S245" "S556" "S123"
## [11] "A351" "G416" "C155" "M325" "H562" "W425" "L526" "F200" "M215" "C520"
## [21] "I645" "S363" "G436" "H536" "W412" "D533" "S526" "S432" "B255" "K340"
## [31] "C642" "T620" "K651" "H325" "L320" "H155" "F635" "H245" "C610" "G425"
## [41] "H613" "L325" "S550" "D351" "A136" "L510" "N532" "N500" "T142" "R242"
## [51] "S536" "S552" "F300" "W325" "T520" "H242" "D342" "S453" "J242" "A551"
## [61] "M260" "H635" "M434" "A313" "K626" "M522" "M210" "D254" "W452" "A652"
## [71] "C525" "M323" "M362" "C623" "W532" "H620" "D253" "G615" "W520" "Y552"
## [81] "M610" "A161" "O416" "C600" "F535" "S632" "D525" "Y550" "S532" "R524"
## [91] "T612" "C515" "J523" "D521" "D452" "C100" "L200" "Y625" "B522" "S530"
## [101] "A163" "J500" "P535" "C416" "C262" "H236" "A132" "A363" "C462" "N265"
## [111] "H655" "A353" "Y000" "M351" "W523" "B625" "A536" "H632" "H323" "K620"
## [121] "A624" "A431" "V121" NA "X520" "P120" "E255" "V120" "N260" "K600"
## [131] "U525" "E363" "P411" "M363"
# find problem rows: 1,540,3484
x %>%
filter(sound == "" | is.na(sound))
# check surrounding rows
x[c(1:3,539:542,3483:3485),c(1,5,22)]
# replace NA/number values with next name in line
x$requested.by[c(1,540,3484)] <- x$requested.by[c(2,541,3485)]
# unique names and sounds
length(unique(x$requested.by)) # 204 unique names
## [1] 204
length(unique(x$sound)) # 132 unique sounds
## [1] 134
We can see that we have quite a few unique names with less unique sounds. This might be because some names are misspelled and the misspellings don’t change the sounds of the names. To address this we’ll loop through each unique name, then take the sound of that name, grouped with all other names that have the same sound. Using this subset that all shares the same sound, we can sort the names in descending order, choosing the most popular and replacing all names by this most popular one. We’ll see this reduces the amount of unique names fom 204 to 132: the same value of unique sounds.
unique.names <- unique(x$sound)
# some names are misspelled but have the same sound
# replace any same-sounding with top used name
# replace unique name with most popular unique name filtered by sound
for (i in 1:length(unique.names)){
# find most popular name of same sounding names
replacement.name <- x %>%
filter(sound == unique.names[[i]]) %>%
group_by(requested.by) %>%
summarise(count=n()) %>%
arrange(desc(count))
replacement.name <- replacement.name[[1]][1]
# if unique.name == requestor$sound, replace with replacement.name
x$requested.by[x$sound == unique.names[[i]]] <-
replacement.name
}
# 129 unique names now
length(unique(x$requested.by))
## [1] 133
Though we’re in a better place, we still see mispelled names in our data. Not much choice but to manually sift through and decide which names should be replaced by what. After manual replacement, our total unique names dips again to 106 from 129.
# but we see mispellings such as adamotvits or lowek
unique(x$requested.by)
## [1] "clingermanm" "clingerman m" "belt p"
## [4] "archibald j" "twardowska h" "fechter r"
## [7] "shriver r" "skoglund m" "showman r"
## [10] "szpak t" "adamovits m" "gilbreath t"
## [13] "chapman c" "madigan j" "henry c"
## [16] "wilson s" "langer h" "fox j"
## [19] "moosavian t" "chen j" "ireland e"
## [22] "sturtz g" "gualtiere d" "hendershot g"
## [25] "wolfgram t" "dando t" "singh r"
## [28] "schultz b" "buchanan c" "kathy lowe"
## [31] "carlson g" "torres h" "kreinbrink j"
## [34] "hutchings d" "lute c" "hoffman m"
## [37] "fredendall a" "hysell m" "carr b"
## [40] "gilson d" "horvath l" "lute/showman"
## [43] "showman" "dudenhofer r" "aufderheide r"
## [46] "lamb b" "neu m-dgh" "neu m"
## [49] "toplikar e" "rigel j" "schneider j"
## [52] "showman j" "fitt w" "woodson w"
## [55] "thomas k" "hysell g" "dietl j"
## [58] "skolund m" "jigel j" "amamovits m"
## [61] "maser r" "hartman m" "melt lab"
## [64] "adaovits m" "kroker j" "muniza j"
## [67] "massey b" "daigneault b" "williams r"
## [70] "armstrong s" "chen jenny" "matthews t"
## [73] "matthers r" "crockett l" "wandtke g"
## [76] "herry c" "desmit d" "gerry fountaine"
## [79] "wang x" "yeomans n" "meyer f"
## [82] "auferfheide r" "oliver t" "carr"
## [85] "fountain g" "swartzlander m" "duncan f"
## [88] "yeoman n" "sandstrom r" "rangel a"
## [91] "trevisan s" "champman c" "johnston s"
## [94] "duanca f" "delong t" "chew b"
## [97] "lowe k" "yirgoyen d" "bangcuyo c"
## [100] "sun d" "auferheide r" "jain n"
## [103] "pinto m" "clifford s" "cecere j"
## [106] "hector r" "aufd/showman" "audderheide r"
## [109] "clark k" "nocera m" "harmon s"
## [112] "adamotvits m" "yu e" "m adamovits"
## [115] "wang sturtz" "beers m" "andrews r"
## [118] "hoertz c" "hoodstack" "kar s"
## [121] "archlbald j" "altepeter m" "vivas p"
## [124] "x wang" "p vivas" "esenwein e"
## [127] "vivas" "nocera" "kar"
## [130] "unknown" "edward yu" "paula vivas"
## [133] "matt hartman"
# not many options but to skim thru manually
name.levels <- as.data.frame(table(x$requested.by))
name.levels
x <- x %>%
mutate(requested.by.tf = requested.by) %>%
mutate(requested.by.tf = ifelse(grepl('vits',requested.by), "mark adamovits", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('bald',requested.by), "jim archibald", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('heid',requested.by), "ron aufderheide", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('carr',requested.by), "ben carr", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('yu',requested.by), "edward yu", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('tain',requested.by), "gerry fountaine", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('herr',requested.by), "henry c", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('henr',requested.by), "henry c", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('igel',requested.by), "judy rigel", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('lowe',requested.by), "kathy lowe", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('vivas',requested.by), "paula vivas", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('lund',requested.by), "m skoglund", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('showm',requested.by), "ralph showman", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('wang',requested.by), "xianping wang", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('hart',requested.by), "matt hartman", requested.by.tf)) %>%
mutate(requested.by.tf = ifelse(grepl('yeom',requested.by), "n yeomans", requested.by.tf)) %>%
mutate(requested.by = requested.by.tf) %>%
select(-requested.by.tf)
# check length again
length(unique(x$requested.by)) # 106
## [1] 107
# seems to be good enough
unique(x$requested.by)
## [1] "clingermanm" "clingerman m" "belt p"
## [4] "jim archibald" "twardowska h" "fechter r"
## [7] "shriver r" "m skoglund" "ralph showman"
## [10] "szpak t" "mark adamovits" "gilbreath t"
## [13] "chapman c" "madigan j" "henry c"
## [16] "wilson s" "langer h" "fox j"
## [19] "moosavian t" "chen j" "ireland e"
## [22] "sturtz g" "gualtiere d" "hendershot g"
## [25] "wolfgram t" "dando t" "singh r"
## [28] "schultz b" "buchanan c" "kathy lowe"
## [31] "carlson g" "torres h" "kreinbrink j"
## [34] "hutchings d" "lute c" "hoffman m"
## [37] "fredendall a" "hysell m" "ben carr"
## [40] "gilson d" "horvath l" "dudenhofer r"
## [43] "ron aufderheide" "lamb b" "neu m-dgh"
## [46] "neu m" "toplikar e" "judy rigel"
## [49] "schneider j" "fitt w" "woodson w"
## [52] "thomas k" "hysell g" "dietl j"
## [55] "maser r" "matt hartman" "melt lab"
## [58] "kroker j" "muniza j" "massey b"
## [61] "daigneault b" "williams r" "armstrong s"
## [64] "chen jenny" "matthews t" "matthers r"
## [67] "crockett l" "wandtke g" "desmit d"
## [70] "gerry fountaine" "xianping wang" "n yeomans"
## [73] "meyer f" "oliver t" "swartzlander m"
## [76] "duncan f" "sandstrom r" "rangel a"
## [79] "trevisan s" "champman c" "johnston s"
## [82] "duanca f" "delong t" "chew b"
## [85] "yirgoyen d" "bangcuyo c" "sun d"
## [88] "jain n" "pinto m" "clifford s"
## [91] "cecere j" "hector r" "clark k"
## [94] "nocera m" "harmon s" "edward yu"
## [97] "beers m" "andrews r" "hoertz c"
## [100] "hoodstack" "kar s" "altepeter m"
## [103] "paula vivas" "esenwein e" "nocera"
## [106] "kar" "unknown"
# only 2 missing customer names, replace with ASK
x %>%
filter(is.na(x$customer.name)==TRUE)
x$customer.name[c(3366,3377)] <- "ASK"
We perform pretty much the same actions as we did above, with requested.by
.
unique(x$alloy)
## [1] "GRAY IRON" "L C STEEL" "319 Al"
## [4] "DUCTILE IRON" "319 AL" "STEEL"
## [7] "LC STEEL" "Al" "L.C. STEEL"
## [10] "WHITE IRON" "GRAY IRPN" "GRAY IRON /DUCTILE I"
## [13] "0" "NONE" "GRAY IRON/DUCTILE IR"
## [16] "319B Al" "S.S." "319 Al"
## [19] "GRAYIRON" "DUCILE IRON" "CG"
## [22] "GRAY IRON,C.G." "C.G." "DUCTILE IRON,GRAY IR"
## [25] "356 Al" "440 S.S." "44O S.S."
## [28] "COPPER" "BRASS" "C.G.I."
## [31] "D.I." "CUSTOMER STEEL" "319Al"
## [34] "CGI" "FISHER STEEL" "STEEL (FISHER)"
## [37] "GRAY IRON,D.I." "GARY IRON" "FRAY IRON"
## [40] "SiMo" "DUCITLE IRON" "L.C STEEL"
## [43] "L.C STEEL" "GRAY IRON" "L.C.STEEL"
## [46] "ALUMINUM" "L. C. STEEL" "\""
## [49] "SiMo DUCTILE" "GI/DI" "STAINLESS STEEL"
## [52] "L.C. Steel" "836 RED BRASS" "Aluminum"
## [55] "ALUMINIUM" "STEEL/GRAY IRON" "DUCTILE"
## [58] "Gray Iron" "unknown" "Steel"
length(unique(x$alloy)) # 60
## [1] 60
# convert case, remove punctuations
x <- x %>%
mutate(alloy = str_replace_all(alloy, '\\ ', '')) %>%
mutate(alloy = str_replace_all(alloy, '\\,', '')) %>%
mutate(alloy = str_replace_all(alloy, '\\.', '')) %>%
mutate(alloy = str_to_lower( alloy))
length(unique(x$alloy)) # 47
## [1] 47
x <- x %>%
mutate(alloy.new = alloy) %>%
mutate(alloy.new = str_replace_all(alloy.new, "[:punct:]","none")) %>%
mutate(alloy.new = ifelse(grepl('al',alloy), "aluminum", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('di',alloy), "ductile iron", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('ductile',alloy), "ductile iron", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('le iron',alloy), "ductile iron", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('gray',alloy), "grey iron", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('y iron',alloy), "grey iron", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('cg',alloy), "cgi", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('brass',alloy), "bras", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('s steel',alloy), "stainless", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('44',alloy), "stainless", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('ss',alloy), "stainless", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('teel',alloy), "lc steel", alloy.new)) %>%
mutate(alloy.new = ifelse(grepl('bras',alloy), "brass", alloy.new)) %>%
mutate(alloy.new = ifelse(alloy.new == "0" |
alloy.new == "none" |
alloy.new == "unknown", NA, alloy.new)) %>%
mutate(alloy = alloy.new) %>%
select(-alloy.new)
# confirm
unique(x$alloy)
## [1] "grey iron" "lc steel" "aluminum" "ductile iron"
## [5] "white iron" NA "stainless" "cgi"
## [9] "copper" "brass" "simo"
length(unique(x$alloy)) # 11
## [1] 11
This datapoint kept track of how many uses each furnace lining accumulated. Instead of using continuing with this way of measuring where we increment each number, we’ll split the measure into two columns: one representing the furnace liner, the other representing how many pours it lasted.
First, we assign NA
to all furnace values with alloys of aluminum as aluminum uses a
different furnace. We then create a few new columns, the first of which is furnace
and will
represent the furnace lining being used; furnace cycle
will increment with each use of the
furnace
; and furnace.name
will be a more endearing name given to the furnace.
# since aluminum uses a different furnace, change all to NA
x$furnace.cycle[x$alloy=="aluminum"] <- NA
# test df
# select first letter to call furnace
xx <- x %>%
select(request, furnace.cycle, alloy) %>%
filter(alloy != "aluminum") %>%
mutate(furnace = str_sub(furnace.cycle,1,1)) %>%
mutate(furnace = str_to_lower(furnace)) %>%
mutate(cycle = NA) %>%
mutate(furnace.name = NA)
# some NA values
xx[is.na(xx$furnace.cycle),]
# if NA, pull value above
for (i in 1:nrow(xx)){
if (is.na(xx$furnace[[i]])){
xx$furnace[[i]] <- xx$furnace[[i-1]]
}
}
# zeros confused with letter o
xx[1543:1576,]
# replace zeros with o's
xx[xx$furnace==0,][4] <- "o"
# M between L's
xx[2679:2684,]
xx[xx$request==3468,][4] <- "m"
# O between N's
xx[2725:2729,]
# switch place
which(xx$request==3517) # 2726
## [1] 2726
xx[2726,][1] <- 3518
xx[2727,][1] <- 3517
# rearrange rows
xx <- xx %>%
arrange(request)
# increment furnace cycle if furnace before = furnace current
# if not, assign value = 1
cycle.counter=1
for (i in 2:nrow(xx)){
# first row = 1
xx$cycle[[1]] <- 1
# vars
before = i-1
current = i
# current != before, start counter over
if (xx$furnace[[current]] != xx$furnace[[before]]){
cycle.counter=1
xx$cycle[[current]] <- cycle.counter
}
if (xx$furnace[[current]] == xx$furnace[[before]]){
cycle.counter=cycle.counter+1
xx$cycle[[current]] <- cycle.counter
}
}
# load names to assign to furnaces, shuffle them
data("common_names")
names <- common_names[1:length(common_names)]
set.seed(1111)
names <- sample(names)
# assign names instead of letters to each furnace
name.counter = 0
for (i in 1:nrow(xx)){
if (xx$cycle[[i]] == 1){
name.counter=name.counter+1
xx$furnace.name[[i]] <- names[[name.counter]]
}
if (xx$cycle[[i]] != 1){
xx$furnace.name[[i]] <- names[[name.counter]]
}
}
# rejoin data
x <- full_join(x,xx)
There are quite a few different kinds of castings. I’ve manually gone thru and renamed a few, it seems an improvement.
# way too many unique
unique(x$casting.type)
## [1] "STEPCONE" "EROSION WEDGE"
## [3] "PENETRATION" "SHRINKAGE CUBE"
## [5] "SHAKEOUT TREE" "AFS MUGS"
## [7] "WARPAGE BLOCKS" "CUBE/SLEEVE"
## [9] "IMPELLAR" "EROEION WEDGE"
## [11] "SLEEVE" "STEPCONE-GRAPHITE"
## [13] "IMPELLER" "WARPAGE BLOCK"
## [15] "GEAR" "GRAPHITE STEPCONE"
## [17] "SLEEVE MODULUS" "SHAKEOUT TREES"
## [19] "MODULUS EXT." "SOOT PLATE"
## [21] "MYSTERY" "CUBES & MOD. EXT."
## [23] "SHAKEOUT TREE 2\"" "WARPAGE BLOCK LRG"
## [25] "UNSUPPORTED SLEEVE" "SHAKEOUT"
## [27] "UN-SUPP, SLEEVE" "PEPETRATION"
## [29] "SHRINKAGE CUBER" "IMPELLER CASTING"
## [31] "TEST BAR" "DILATION"
## [33] "GEAR MOLD" "EROSON WEDGE"
## [35] "PIG" "CHILL WEDGE"
## [37] "FLUIDITY SPIRAL" "FLUIDITY TREE"
## [39] "STEPSONE" "FLOW PLATE"
## [41] "U.S. SLEEVE" "EROSION WEDGE BASE"
## [43] "FLOW TREE" "OIL GALLERY"
## [45] "LARGE GEAR BOX" "POURING CUP"
## [47] "REDFORD PLATE" "EROSION WEDGGE"
## [49] "MANIFOLD" "OIL GALLEY"
## [51] "7 INCH SHAKEOUT" "NONE"
## [53] "SPIRAL" "FLOW PATTERN"
## [55] "CUSTOMER" "EXACTCAST PLAQUE"
## [57] "SHAPE TEST" "PLATE"
## [59] "WEDGE" "PLAQUE"
## [61] "DETAIL PLAQUE" "STEP BLOCK"
## [63] "MODULUS" "REFINER PLATE"
## [65] "BISHOP" "SEMI-PERM"
## [67] "UNSUPPORTED RISERS" "CAROUSEL-TEMP."
## [69] "BUCKLE" "R.R. WHEEL"
## [71] "BLOCK" "EROISON WEDGE"
## [73] "EROSION WEDGE TREE" "SLEEVE-SUPPORTED"
## [75] "DOG-BONE" "MANDREL"
## [77] "EXPERIMENTAL" "SOOT PLATE INSERTS"
## [79] "EXPERIMENTAL-NEMAK" "HOODSTACK"
## [81] "PENETRATIONS" "PIPE"
## [83] "FRYING PAN" "SLEEVE FILTER"
## [85] "THIN WALL" "POURING CUP FILTER"
## [87] "GM BLOCK" "ROTOR"
## [89] "END CAP" "PENETRATION RISER"
## [91] "BELT BUCKLES" "BELT BUCKLE"
## [93] "FLUIDITY FILTER" "PENTRATION"
## [95] "EROSION WEDGES" "TEST-CUSTOMER"
## [97] "PLAQUES" "SHRINKAGE CUBES"
## [99] "PIG TEST COUPONS" "PIG,WARPAGE BLOCK"
## [101] "SAND MAGAZINE" "SMALL STEP BLOCK"
## [103] "TENSILE BARS" "STEPBLOCK"
## [105] "4 X 8 PLATE" "BRACKET"
## [107] "BRACKETS" "POKER CHIP/B.B."
## [109] "PENETRATION,PIG" "FILTER CAVITY"
## [111] "PENETRATION+PIG" "EROSION WEDGE"
## [113] "SLEEVES" "FIAT HEAD"
## [115] "TENSILE SHAKEOUT" "TENSILES"
## [117] "PROTOTYPE" "SOOT PLATE, PIG"
## [119] "PIG-FILTERED" "REFINER TEST PLATE"
## [121] "FILTER TEST" "FILTER-PIG"
## [123] "ROTORS" "SHRINK CUBE"
## [125] "SHINKAGE CUBE" "EROSION WEDGE,PIG"
## [127] "GEAR, PIG" "MOD. PIG"
## [129] "TENSILE,CHILL,BUT." "THIN-WALL"
## [131] "IMPELLER-PIG" "MOD. SOOT PLATE"
## [133] "BUCKLES" "FILTER"
## [135] "STEP BLOCK-SMALL" "SCAB BLOCK"
## [137] "CLAMP" "GATOR CORE CASTING"
## [139] "GATOR CORE" "GATOR"
## [141] "STEP BLOCK SINT." "ANCHOR"
## [143] "PROPELLER" "SLEEVE/PIG"
## [145] "POKER CHIP" "CHESS PIECES"
## [147] "DUDE" "STE[PCONE"
## [149] "GRAVE MARKER" "TEST BARS"
## [151] "SHAKEOUT-SPM" "TEST CASTING-CGI"
## [153] "SHRICK CUBE" "SHAKEOUT S.P.M."
## [155] "PEN/DURAMETAL" "SHRIINKAGE CUBE"
## [157] "STEPBLOCKS" "WARAPGE BLOCK"
## [159] "GM BLOCKS" "OSU CASTING"
## [161] "WARPAGE CASTING" "SMALL STEPCONE"
## [163] "STEPCONE GRAPHITE" "IIMPELLER"
## [165] "PENTERATION" "SOOTPLATE"
## [167] "RISER SLEEVE" "HELICOPTER"
## [169] "5\" SHRINK CUBE" "3.5\" SHRINK CUBE"
## [171] "FILTER TEST-PIG" "SLEEVE CYLINDER"
## [173] "SLEEVE-PIG" "FILTER POURING CUP"
## [175] "FILTERS" "FILTER TESTS"
## [177] "SHRIKAGE CUBE" "SHRINKABE CUBE"
## [179] "SHRINKEAGE CUBE" "GM HEAD TEST"
## [181] "ASK SYMBOL" "SLEEVES-SMOKE"
## [183] "ASK BALL, PIG" "PIG-M.L. CALIB."
## [185] "WAPPAGE BLOCK" "FILTER MOLD"
## [187] "PENETRATION-SLEEVE" "SHRINK CUBES"
## [189] "SHRINKAGE CUBE" "PENETRTATION"
## [191] "PIG-FILTER TEST" "STEPCONES"
## [193] "SMALL PIG" "SMALL PIG MOLD"
## [195] "POUR CUP & PIGS" "SLEEVES IN DRY SAN"
## [197] "IMPELLERS" "WARPAGE BARS"
## [199] "PIG MOLDS" "STEP CONES"
## [201] "GEAR MOLDS" "BRAKE ROTORS"
## [203] "RISERS" "WARPAGE BAR"
## [205] "SAMPLES" "WEDGES/STEP CONES"
## [207] "STEP CONE" "STEP-CONES"
## [209] "4\" SHRINK CUBES" "3\" SHRINK CUBES"
## [211] "SC / PENETRATIONS" "ER WEDGE/ STEP-CON"
## [213] "CHILL WEDGE/COUPON" "PENETRATION/STEP-"
## [215] "SPM" "Riser"
## [217] "WARPAGE BLOCKS/BIO" "wedge/pene/so tree"
## [219] "SPM/WARPAGE BLOCKS" "SHAKE-OUT TREE"
## [221] "PIGS" "Bio-Spheres"
## [223] "PENE/STEP/EROSION" "EROSION WEDGE(RS)"
## [225] "PENE/STEP CONE" "STEP CONE/EROSION"
## [227] "SHRINK CUBE/IMPELL" "\""
## [229] "BRAKE ROTOR" "EROSION WEDGES/SC"
## [231] "SHAKE OUT TREE" "EROSION WEDGE/STEP"
## [233] "MODIFIED RISER" "inverted sleeves"
## [235] "INVERTED SLEEVES" "STEP-CONE"
## [237] "EROSION/STEPCONE" "MTI castings"
## [239] "MTI Castings" "MTI Casting"
## [241] "PENETRATION/STEP-C" "MTI CASTING"
## [243] "LAUNDER" "SC/PENE/HALF PIGS"
## [245] "S. CUBE/PENETRATIO" "S. CUBE/PIG MOLD"
## [247] "PIG MOLD" "MTI MOLD"
## [249] "SHRINK CUBE 5\"" "SHRINK PLATE"
## [251] "STEP BLOCK/SPIRAL" "STEP CONE/PENE"
## [253] "EROSION WEDGE/PENE" "EROSION/PENE"
## [255] "STEP-CONE/PENETRAT" "PENE/STEP-CONE"
## [257] "PENE/BRAKE" "PENE/STEPCONE"
## [259] "Step cones" "PENE/SHRINK CUBE"
## [261] "CAT BLOCK" "IRREGULAR GEAR"
## [263] "DBL PENETRATIONS" "WARPAGE"
## [265] "GRAPHITE MOLDS" "unknown"
## [267] "Shrink Cubes" "Penetrations"
## [269] "Erosion wedges" "Stepcones + Investment"
## [271] "3\" Shrink cubes" "Pen + Ero"
## [273] "Shakeout trees" NA
length(unique(x$casting.type)) # 274
## [1] 274
# remove double spaces, commas, periods
x <- x %>%
mutate(casting.type1 = str_replace_all(casting.type, '\\ ', ' ')) %>%
mutate(casting.type1 = str_replace_all(casting.type, '\\,', ' ')) %>%
mutate(casting.type1 = str_replace_all(casting.type, '\\.', ' ')) %>%
mutate(casting.type1 = str_to_lower( casting.type)) %>%
mutate(casting.type = casting.type1) %>%
select(-casting.type1)
# unique(x$casting.type)
length(unique(x$casting.type)) # 264
## [1] 265
x <- x %>%
mutate(casting.type1 = casting.type) %>%
mutate(casting.type1 = ifelse(grepl('cube',casting.type), "shrink cube", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('ero',casting.type), "erosion wedge", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('sleeve',casting.type), "sleeves", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('shake',casting.type), "shakeout tree", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('page',casting.type), "warpage block", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('ration',casting.type), "penetration", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('pene',casting.type), "penetration", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('graphit',casting.type), "graphite step", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('cone',casting.type), "stepcone", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('steps',casting.type), "stepcone", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('graphite',casting.type), "graphite stepcones", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('fluid',casting.type), "fluidity spiral", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('buck',casting.type), "belt buckles", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('gator',casting.type), "gator", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('soot p',casting.type), "sootplate", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('gear',casting.type), "gear mold", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('rotor',casting.type), "brake rotor", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('pig',casting.type), "pigs", casting.type1)) %>%
mutate(casting.type1 = ifelse(grepl('impel',casting.type), "di impeller", casting.type1)) %>%
mutate(casting.type = casting.type1) %>%
select(-casting.type1)
# slightly better, not perfect
unique(x$casting.type)
## [1] "stepcone" "erosion wedge" "penetration"
## [4] "shrink cube" "shakeout tree" "afs mugs"
## [7] "warpage block" "sleeves" "di impeller"
## [10] "graphite stepcones" "gear mold" "modulus ext."
## [13] "sootplate" "mystery" "test bar"
## [16] "dilation" "pigs" "chill wedge"
## [19] "fluidity spiral" "flow plate" "flow tree"
## [22] "oil gallery" "pouring cup" "redford plate"
## [25] "manifold" "oil galley" "none"
## [28] "spiral" "flow pattern" "customer"
## [31] "exactcast plaque" "shape test" "plate"
## [34] "wedge" "plaque" "detail plaque"
## [37] "step block" "modulus" "refiner plate"
## [40] "bishop" "semi-perm" "unsupported risers"
## [43] "carousel-temp." "belt buckles" "r.r. wheel"
## [46] "block" "dog-bone" "mandrel"
## [49] "experimental" "experimental-nemak" "hoodstack"
## [52] "pipe" "frying pan" "thin wall"
## [55] "pouring cup filter" "gm block" "brake rotor"
## [58] "end cap" "test-customer" "plaques"
## [61] "sand magazine" "small step block" "tensile bars"
## [64] "stepblock" "4 x 8 plate" "bracket"
## [67] "brackets" "poker chip/b.b." "filter cavity"
## [70] "fiat head" "tensiles" "prototype"
## [73] "refiner test plate" "filter test" "tensile,chill,but."
## [76] "thin-wall" "filter" "step block-small"
## [79] "scab block" "clamp" "gator"
## [82] "step block sint." "anchor" "propeller"
## [85] "poker chip" "chess pieces" "dude"
## [88] "grave marker" "test bars" "test casting-cgi"
## [91] "pen/durametal" "stepblocks" "warapge block"
## [94] "gm blocks" "osu casting" "helicopter"
## [97] "filter pouring cup" "filters" "filter tests"
## [100] "gm head test" "ask symbol" "filter mold"
## [103] "risers" "samples" "er wedge/ step-con"
## [106] "chill wedge/coupon" "spm" "riser"
## [109] "bio-spheres" "\"" "modified riser"
## [112] "mti castings" "mti casting" "launder"
## [115] "mti mold" "shrink plate" "step block/spiral"
## [118] "cat block" "unknown" NA
length(unique(x$casting.type)) # 120
## [1] 120
Not the most important variable, will change a few of the obvious errors.
unique(x$sand.type)
## [1] "TECHNISAND 1L-5W" NA "NONE"
## [4] "UNIMIN F-60" "WEDRON 540" "CUSTOMER"
## [7] "TECHNISAND 1L-=5W" "TECHNIAND 1L-5W" "WEDRON RECLAIM"
## [10] "1L-5W/SGT" "1L-5W+SGT" "TECNNISAND 1L-5W"
## [13] "RECLAIM/WEDRON 540" "WEDRON RECLAIM/540" "WEDRON REC"
## [16] "SEMI-PERM MOLD" "GREENSAND" "WEDRON 530"
## [19] "TECHNISAND 1L-5W/SGT" "OKLAHOMA 90" "TECHNISAND 1LK-5W"
## [22] "CUSTOMER RECLAIM" "1L-5W/J1" "1L-5W/SGT/J1"
## [25] "WEDRON 520" "WEDRON 520/ZIRCON" "TECHNISAND 1L05W"
## [28] "CUSTOMERS" "WEDRON 510" "ZIRCON RECLAIM"
## [31] "NUGENT W-3" "WEXFORD 450H" "TECHNISAND/J1"
## [34] "NUGENT 630/GREENSAND" "ZIRCON RECLIAM" "TECHNISAND1L-5W"
## [37] "NUGENT 480" "UNKNOWN" "TECHNISAND/SGT"
## [40] "RECLAIM/WEDRN 540" "TECHNISAND 1L-6W" "OK 80/1L-5W"
## [43] "RECLAIMED ZIRCON/ZIR" "W-540,OK90,ZIRCON,1L" "W-54O,OK9O,ZIRCON"
## [46] "OK90,G220,1L-5W" "1L-5W" "OK-90/1L-5W"
## [49] "1L-5W/OK-90" "1L-5W/0K-90" "TECHNISAND 1L-51"
## [52] "1L-5W/0K 90" "OGELBAY" "WEDRON 320"
## [55] "1L-5W/OK90" "TECHNISAND 1L-5W" "DUR. RECLIAM/1L-5W"
## [58] "BADGER 5574" "DUR.RECLAIM/1L-5W" "DUR.RECLALIM/1L-5W"
## [61] "RECLAIM/1L-5W" "NUGENT 510" "OK/90,1L-5W"
## [64] "GELHAR M-50" "TECHISAND 1L-5W" "VEIGA"
## [67] "VEIGA/AL-5W" "OK 90/1L-5W" "540/520"
## [70] "SLEEVE 220" "1L-5W/OK 90" "OK 90/EXACTHERM"
## [73] "TECHNIASAND 1L-5W" "W540,CHROMITE,EX." "TECHNISAND 1l-5W"
## [76] "ZIRCON,W540,1L-5W" "MANELY 1L-5W" "ZIRCON, W540"
## [79] "MANLEY 1L-5W" "WERON 540/500W" "WEDRON 460"
## [82] "WEDRON 410" "WEDORN 410" "WERON 410"
## [85] "CUSTOMER,410" "CUSTOMER R." "410/540"
## [88] "WEDORON 410" "WEDRON410" "SPM"
## [91] "\"" "GRAPHITE MOLD" "WEDRON 410"
## [94] "W410" "unknown" "W411"
## [97] "W412" "W413" "W414"
## [100] "W415" "W416" "W417"
## [103] "W418" "W419" "W420"
## [106] "W421" "W422" "W423"
## [109] "W424" "W425" "W426"
## [112] "W427" "W428"
length(unique(x$sand.type)) # 113
## [1] 113
x <- x %>%
mutate(sand.type1 = str_replace_all(sand.type, '\\ ', ' ')) %>%
mutate(sand.type1 = str_replace_all(sand.type, '\\,', ' ')) %>%
mutate(sand.type1 = str_replace_all(sand.type, '\\.', ' ')) %>%
mutate(sand.type1 = str_to_lower( sand.type)) %>%
mutate(sand.type = sand.type1) %>%
select(-sand.type1)
# unique(x$sand.type)
length(unique(x$sand.type)) # 111
## [1] 111
x <- x %>%
mutate(sand.type1 = sand.type) %>%
mutate(sand.type1 = ifelse(grepl('w41',sand.type), "w410", sand.type1)) %>%
mutate(sand.type = sand.type1) %>%
select(-sand.type1)
# unique(x$sand.type)
length(unique(x$sand.type)) # 102
## [1] 102
We’ve done enough cleaning for some analysis, will reorder some variables for more clear presentation and
change some column classes. The final dataframe will be renamed y
instead of x
and exported to a new file..
################################
y <- x %>%
select(request,
date.received,
date.poured,
date.completed,
requested.by,
customer.name,
product.tested,
casting.type,
number.of.castings,
alloy,
alloy.lbs,
sand.type,
sand.lbs,
total.hours,
total.cost,
preprocessing.time,
postprocessing.time,
lead.time,
furnace.name,
cycle,
notes.ml) %>%
mutate(requested.by=as.factor(requested.by)) %>%
mutate(customer.name=as.factor(customer.name)) %>%
mutate(product.tested=as.factor(product.tested)) %>%
mutate(casting.type=as.factor(casting.type)) %>%
mutate(alloy=as.factor(alloy)) %>%
mutate(sand.type=as.factor(sand.type)) %>%
mutate(furnace.name=as.factor(furnace.name))
gg_miss_var(y, show_pct = T)
glimpse(y)
## Observations: 3,631
## Variables: 21
## $ request <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,...
## $ date.received <date> 1999-01-04, 1999-01-04, 1999-01-04, 1999-...
## $ date.poured <date> 1999-01-05, 1999-01-06, 1999-01-07, 1999-...
## $ date.completed <date> 1999-01-13, 1999-01-13, 1999-01-13, 1999-...
## $ requested.by <fct> clingermanm, clingerman m, clingerman m, c...
## $ customer.name <fct> TS&D, TS&D, TS&D, TS&D, BRILLION, K O STEE...
## $ product.tested <fct> ISOCURE, ISOCURE, ISOCURE, ISOCURE, ISOCUR...
## $ casting.type <fct> stepcone, stepcone, erosion wedge, erosion...
## $ number.of.castings <dbl> 8, 8, 8, 8, 3, 1, 8, 10, 8, 4, 10, 8, 2, 1...
## $ alloy <fct> grey iron, grey iron, grey iron, grey iron...
## $ alloy.lbs <dbl> 250, 250, 600, 600, 90, 90, 160, 30, 20, 1...
## $ sand.type <fct> technisand 1l-5w, technisand 1l-5w, techni...
## $ sand.lbs <dbl> 840, 840, 1680, 1680, 270, 210, 640, 240, ...
## $ total.hours <lgl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
## $ total.cost <dbl> 1300, 1300, 2210, 2210, 862, 715, 2080, 84...
## $ preprocessing.time <dbl> 1, 2, 3, 4, 5, 2, 1, 3, 2, 7, 1, 1, 4, 1, ...
## $ postprocessing.time <dbl> 8, 7, 6, 5, 1, 2, 8, 1, 1, 4, 1, 3, -2, 5,...
## $ lead.time <dbl> 9, 9, 9, 9, 6, 4, 9, 4, 3, 11, 2, 4, 2, 6,...
## $ furnace.name <fct> regenia, regenia, regenia, regenia, regeni...
## $ cycle <dbl> 1, 2, 3, 4, 5, 6, 7, NA, NA, NA, NA, NA, N...
## $ notes.ml <chr> "TEST NEW BASE RESIN WITH STEPCONE CASTING...
# export to xls
write.xlsx(y, file=paste0(getwd(),"/data/cleanedMAL.xlsx"), sheetName="Sheet1",
col.names=TRUE, row.names=TRUE, append=FALSE)
Now we need to figure out what to do with the data. First we can try some simple EDA with what variables we have, then get into analysis more focused on furnace life.
A couple basic plots show our busiest months occur between August and May, and that pour frequency has reduced dramatically since 1999, or even 2015 for that matter.
# Histogram of pours per month
g1 <- y %>%
mutate(month=as.factor(substring(months.Date(x$date.poured),1,3))) %>%
ggplot(aes(x=month,fill=..count..))+
geom_histogram(stat="count")+
scale_x_discrete(limits=c("Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec"))+
ggtitle("Cumulative pours over all months")+
scale_fill_viridis()+
theme(legend.position = "none")+
coord_flip()
# Histogram of pours per year
g2 <- y %>%
mutate(year=as.factor(substring(x$date.poured,1,4))) %>%
filter(!is.na(year)) %>%
ggplot(aes(x=year,fill=..count..))+
geom_histogram(stat="count")+
ggtitle("Pours per year")+
scale_fill_viridis()+
theme(legend.position = "none")+
theme(axis.text.x = element_text(angle=45,hjust=1))
grid.arrange(g1,g2,ncol=2)
Faceting number of pours over the years gives a little more insight as to when pours were occuring.
# Pours per month faceted by year
y %>%
mutate(month=as.factor(substring(months.Date(x$date.poured),1,3))) %>%
mutate(year=as.factor(substring(x$date.poured,1,4))) %>%
filter(!is.na(year)) %>%
ggplot(aes(x=month,fill=..count..))+
geom_histogram(stat="count")+
scale_x_discrete(limits=c("Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec"))+
ggtitle("Pours per month per year")+
scale_fill_viridis()+
theme(legend.position = "none")+
theme(axis.text.x = element_text(angle=90,hjust=1,vjust=0.5,size=7))+
facet_wrap(year~.)
Why are some furnaces lasting longer than others? Dramatically so in some cases? Plotting the longest
lasting furnaces (n > 50
) shows the longest lasting furnace is toby
, which
lasted 178 days. These extremely high values seem like outliers based on experience and when we plot the
values using a boxplot, our plot confirms they are outliers.
# barplot of longest lasting furnaces
p1 <- y %>%
filter(!is.na(furnace.name)) %>%
mutate(furnace.name=as.factor(furnace.name)) %>%
count(furnace.name) %>%
# arrange(desc(n)) %>%
filter(n>50) %>%
ggplot(aes(x=reorder(furnace.name,n),y=n,fill=n))+
geom_bar(stat="identity")+
coord_flip()+
scale_fill_viridis()+
theme(legend.position = "none")+
ggtitle("Longest lasting furnaces, n>50")
# boxplot of furnace life
p2 <- y %>%
filter(!is.na(furnace.name)) %>%
mutate(furnace.name=as.factor(furnace.name)) %>%
count(furnace.name) %>%
select(-furnace.name) %>%
mutate(furnace = as.factor("furnace")) %>%
ggplot(aes(y=n,x=furnace))+
geom_boxplot(outlier.shape = NA,
position=position_dodge(width=.9))+
geom_jitter(aes(color=n),width=.1)+
coord_flip()+
theme(legend.position = "none")+
ggtitle("Distribution of furnace.life values")
grid.arrange(p1,p2,nrow=1)